# alphaDUR II

Manual

**Version 1.1.21** 



| 1 Introduction                              | 5  |
|---------------------------------------------|----|
| 2 The test probes                           | 6  |
| 2.1 Probe selection                         | 6  |
| 2.2 Probe handling                          | 6  |
| 3 General working instructions              | 7  |
| 3.1 Key functions                           | 7  |
| 3.2 Status bar                              | 8  |
| 3.3 The menus                               | 8  |
| 3.4 Text input                              | 8  |
| 3.5 Numeric field                           | 9  |
| 4 Measurement                               | 10 |
| 4.1 Specimen requirements                   | 10 |
| 4.2 Measuring procedure                     | 11 |
| 4.3 Accompanying statistics                 | 13 |
| 4.3.1 Display of statistics                 | 13 |
| 4.4 Instant printout                        | 15 |
| 5 Measuring parameter                       | 16 |
| 5.1 Description                             | 16 |
| 5.2 Managing sets of measuring parameter    | 17 |
| 5.2.1 Editing measuring parameter           | 17 |
| 5.2.2 Saving sets of measuring parameter    | 18 |
| 5.2.3 Loading a set of measuring parameter  | 18 |
| 5.2.4 Deleting a set of measuring parameter | 18 |
| 6 Hardness conversion                       | 19 |
| 7 Material calibration                      | 20 |
| 8 Memory functions                          | 22 |
| 8.1 Creating a new series                   | 22 |
| 8.2 Continuation of a series                | 23 |

| 8.3 Deleting a series         | 23 |
|-------------------------------|----|
| 8.4 Displaying a series       | 23 |
| 9 System settings             | 24 |
| 9.1 Language                  | 24 |
| 9.2 Ports                     | 24 |
| 9.3 Time                      | 24 |
| 9.4 Date                      | 24 |
| 9.5 System information        | 24 |
| 10 Maintenance and inspection | 25 |
| 11 The UCI method             | 25 |
| 12 Proper disposal            | 26 |
| 12.1 German                   | 27 |
| 12.2 French                   | 27 |
| 12.3 Italian                  | 27 |
|                               |    |
| 12.4 Spanish                  |    |
|                               | 27 |

## 1 Introduction

The alphaDUR II is a portable hardness tester. Vickers hardness is measured according to the UCI (Ultrasonic Contact Impedance) method. The measured Vickers hardness can be converted to Brinell hardness (HB), Rockwell hardness (HRC or HRB) or tensile strength (N/mm²) according to DIN standard 50150.

Up to 500 000 readings including hardness, date, time and measuring parameter can be stored to the internal memory of the alphaDUR II. The memory can be divided into sections for use by different users or projects. Saved series of measurements, including statistics, can be readily displayed or printed. The program alphaSOFT (not included with the alphaDUR II) is used to transfer the series to a PC.

In addition to the permanent storage, the readings can be temporarily saved and accompanying statistics can be computed.

Furthermore, the alphaDUR II provides a so called 'instant printout' function. The readings will be instantly printed after measurement. No statistics will be calculated.

# 2 The test probes

#### 2.1 Probe selection

alphaDUR II UCI test probes are available with test loads of 10, 20, 30, 49, and 98 N. This corresponds to HV1, HV2, HV3, HV5 and HV10 (1, 2, 3, 5 and 10 kg).

So the optimal load for a particular test task can be chosen. Two criteria are crucial for the selection of the appropriate probe: surface of the specimen and handling. For rough surfaces, high test loads are recommended, which leads to greater indentations. But it ought be considered, that

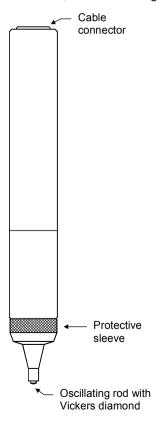



Fig. 1

it may be necessary to apply a load of up to 10 kg manually. This is not a problem if the probe is fixed in a stand. But it could be difficult to apply the test load steadily and vertically if many consecutive measurements must be done.

## 2.2 Probe handling

The protective sleeve serves 2 purposes:

It protects the UCI rod against damages (as distortion).

It serves as a mechanical stop for the deflection of the rod during measurement.

To conduct a measurement, the probe must be held perpendicular to the specimen surface. (The alphaDUR II has to be calibrated to the material

and must be in measuring mode.) The Vickers diamond may touch the surface slightly, but not for too long (otherwise an error occurs). Then the probe is pressed to the specimen until the protective sleeve hits the surface. An acoustic signal indicates the completion of the measurement. To achieve an accurate measurement, the probe must be pressed steadily and vertically onto the specimen.

To facilitate the measurement procedure, probe supports can be attached to the probe in place of the protective sleeve. These probe supports are obtainable for flat and convex surfaces.

A high precision stand is available, which eases load application, particularly when a large number of measurements has to be taken or in case of a high test load.

# 3 General working instructions

# 3.1 Key functions



Press this key to cancel the current action or to return to the superior menu item . Changes are not assumed.



Press this key to select a menu item. This key is also used to select the characters in the text input.





Use these keys to navigate through the menus or select the value in an input field.

Under certain circumstances, the function keys F1-F4 will be used to ease the operation. E.g. in the measurement dialogue, the hardness scale can be switched by the F1 key, so you don't have to click through the menu to change it.

#### 3.2 Status bar

On the status bar the battery charge condition and the current time are displayed.

#### 3.3 The menus

A menu consists of a list of available menu items. The active menu item

is marked by a red bar. The active menu item can be selected by means of the cursor keys. Press the ENTER key to choose a menu item. A dialog or a submenu will be opened, depending on the chosen menu item.



The ESC key closes the active menu and Fig. 2: Main menu shows the superior menu.

Particular attention has been paid not to complicate the handling by deeply nested menus. Sometimes, the operation can be greatly facilitated by means of the function keys.

# 3.4 Text input

Whenever a set of measuring parameters is to be stored, a new series of measurement should be created or a new material should be calibrated, a name must be given in plain text. In all these cases, the text input dialog is opened.



Fig. 3: Text input

In the upper field (hereinafter referred to as text field) the so far entered text is displayed. In the rows below, the available characters are shown. The blank is marked by  $\Pi$ .

Select a character by means of the cursor keys and press ENTER to append it to the text in the text field.

F1 switches the available characters between upper- and lower-case.

Press F2 to delete the last character in the text field.

Press F4 to accept the input and close the dialog.

F3 or ESC discards the input and closes the dialog.

#### 3.5 Numeric field

Numerical data are entered in a numeric field. A numeric field consists of mostly multiple digits, which can be individually altered. The active digit is marked by a red background and can be selected with the cursor keys LEFT/RIGHT. To change the active digit, press the cursor keys UP/DOWN.

To add new digits to the left of the number, press the cursor key LEFT until the desired number of digits is reached.

Press F4 to accept the input and close the dialog.

F3 or ESC discards the input and closes the dialog.

#### 4 Measurement

## 4.1 Specimen requirements

As in all hardness tests, besides the hardness of the specimen some other characteristics can influence the measurement result. These characteristics include the surface quality, the thickness and the homogeneity of the specimen.

Some essential requirements have to be fulfilled to achieve reliable reproducible hardness values.

#### Surface quality

The surface quality should be the same as for optical Vickers hardness tests according to DIN standard. For low test loads, the quality has to be higher than for high test loads. The surface must be free from oxides, impurities and lubricants. The surface roughness should not exceed 1/5 of the penetration depth.

#### Thickness

For optical Vickers hardness tests, the thickness of the specimen should be at least ten times higher than the penetration depth. This applies also to the thickness of coatings.

The UCI method requires a higher thickness, because the oscillations of the UCI rod are transmitted to the specimen. They spread over the specimen and will be reflected at the boundaries. These reflected oscillations influence the frequency shift in the UCI rod and affect the accuracy of the measurement.

To avoid this effect, the specimen has to be thick enough to allow the oscillations to attenuate before the diamond is reached. With thin specimen, the mass of the specimen has an effect. If the mass of the specimen is high enough, a thickness of 8 mm for flat specimen or 10 mm for round stock is sufficient. If a specimen does not meet these require-

ments, it can be acoustically coupled to a massive support e.g. with a thin oil film between specimen and support. A steel plate is recommended as support (e.g. the precision stand comes with an appropriate plate).

Small, irregular shaped parts can be embedded in plastic material.

## Homogeneity

As in optical Vickers hardness tests, the indentations are relative small. Therefore the homogeneity of the specimen can possibly influence the measurement results. To achieve reproducible hardness readings, the indentation must be significantly greater than the grain size of the test material. This may be not the case for some cast material even with a test load of 100N.

## 4.2 Measuring procedure

Select **Measurement** from the main menu to start a measurement.

The test load of the connected probe will be detected automatically.

The measuring parameter must be set according to the demands. The parameter are in particular:

Material

Hardness scale

Rating

Statistics

Instant printout

These parameter are described in detail in chapter 5.2. Select the menu item **Measuring parameter/Edit** to set them. If a set of measuring parameter that meets the requirement already has been saved, you can use the menu item **Measuring parameter/Load** (see 5.2.3) to reload them. After power-up, the alphaDUR II restores the measuring parameter which were last used.

To make a measurement, put the probe vertically onto the specimen and press it down steadily as far as it will go. The hardness value will be determined shortly before the protective sleeve touches the surface of the specimen. Therefore vibrations caused by the protective sleeve hitting the surface will not influence the measurement result. The measurement is completed when you hear the beep. The number of fractional digits shown depends on the hardness scale. Rockwell scales will usually be displayed with 1 fractional digit, Vickers, Brinell and tensile strength without any fractional digits.



Fig. 4: Measuring window

Within certain boundaries, the speed with which the probe is pressed down has no influence on the measurement result. If the probe is lowered too fast or if the probe is not raised from the specimen for some time, an error message will be shown.

In the lower part of the measuring window the selected material and, beneath it, the last measured values are displayed. If the accompanying statistics (see 4.3) is activated, the number of the next reading and the total number of readings for statistic is shown. To the right of the last measured values the mean value is displayed.

The hardness scale can be switched by the F1 key if neither the data storage nor the accompanying statistics are in progress. When the scale is switched, the tolerance limits will be converted accordingly. The conversion may cause small rounding errors. If the limits can not be

converted, they will be set to 0. But the original limit values will be saved and restored, when the scale is switched again.

## 4.3 Accompanying statistics

This function computes the statistics of readings which are not permanently saved. When the measurement window is closed, the statistical data will be reset.

If a value greater than 0 is entered into the field <u>Num. for statistics</u> (menu item **Measuring parameter / Edit / Statistics**), and if data storage is not in progress, the readings will be temporarily saved an the statistics will be calculated. The number of readings done will be shown on the screen. When the desired number is reached or when the measuring window is closed, the statistics will be displayed.

The hardness scale cannot be switched with the F1 key if the accompanying statistics is activated. In this case, another hardness scale can only be set in **Measuring parameter / Edit / Hardness scale**.

## 4.3.1 Display of statistics

The statistics will be displayed when the predetermined number of data has been measured or when the F3 key (Statistics) is pressed. First, mean value, standard deviation, standard deviation as percentage of mean value, minimum, maximum and the number of data will be shown.

Standard deviation and mean value are indicated with one more fractional digits than usual for the hardness scale. Rockwell scales will usually be displayed with 1 fractional digit, Vickers, Brinell and tensile strength without any fractional digits. The standard deviation as as percentage of

mean value is displayed with 2 fractional digits.



Fig. 5: Statistics

The measuring parameters can be displayed with F2 (Meas. param.).

Press F1 (Values) to show the statistical data. Clearly wrong values can be edited or deleted.



Fig. 6: Values

To edit a value, move the red mark to the value you want to edit and press ENTER. The number input dialog (see 3.5) will be opened and the value can be altered. The number input dialog can be closed with F4 ('Ok', changes will be saved) or F3 ('Cancel', changes will be discarded). To delete a value, move the red mark to the value you want to delete and press F2 (Delete).

F3 (Cancel) or ESC closes the statistical data windows and discards all changes. Press F4 (Save) to close the window and save all changes. The statistics will be refreshed.

Press ESC to close the display of statistics. If the predetermined number of statistical data not yet reached (because the display of statistics was started with F3 or because a value has been deleted) the measurements will be continued. If the predetermined number of data is reached, the data can be saved as a new series. Also, the data can be printed, even if they have not been saved as a new series.

## 4.4 Instant printout

If a mobile printer is connected, a consecutive printout can be made. The

measured data are then instantly printed. The instant printout mode stays active when the measuring window is closed. It must be explicitly deactivated (see chapter 5.2.1). If the instant printout mode is active, the hardness scale can no longer be switched by the F1 key in the measuring window. In this case, select the menu item **Measuring parameter / Edit / Hardness scale** to set another hardness scale.

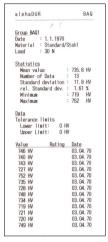



Fig. 7

# 5 Measuring parameter

## 5.1 Description

After power-up, the alphaDUR II restores the last used measuring parameter

#### **Details:**

Material:

This is the active material calibration. For details about material calibration see chapter 7.

Hardness scale: This is the hardness scale (Vickers (HV), Rockwell (HRC or HRB), Brinell (HB) or tensile strength (N/mm<sup>2</sup>)), to which the readings will be converted. The result of an UCI measurement is Vickers hardness. If another hardness scale is selected, the values will be converted according to DIN standard 50150. To change the hardness scale, select the menu item Measuring parameter / Edit / Hardness scale or press the F1 key in the measuring window. If the instant printout mode (see 4.4) or the accompanying statistics (see 4.3) is activated, the hardness scale can no longer be switched by the F1 key of the measuring window.

Rating:

These are the upper and lower limits for rating. A signal of 3 short beeps sounds if a measured value lies outside these limits. A single beep sounds if the value is rated GOOD.

If both limits are set to 0, no rating will be done. It is self-evident, that the the upper limit must be higher than the lower limit.

If rating is activated, a red arrow will be displayed in the measuring window when the upper or

lower limit is exceeded.

Statistics: The number of data for the accompanying statist-

ics (see 4.3) is defined here. No statistics will be

computed if this value is set to 0.

Instant printout: If a mobile printer is connected, a consecutive

printout can be made (see 4.4). This parameter

can be set On or Off.

## 5.2 Managing sets of measuring parameter

Sets of measuring parameter can be stored to the alphaDUR II. So parameter combinations required for a particular application can conveniently be read back

## The following parameter will be saved:

- Name
- Test load
- Material
- Hardness scale (HV, HB, HRC, HRB or tensile strength [N/mm<sup>2</sup>])
- Upper and lower limit for rating
- Instant printout state (on or off)
- Number of data for accompanying statistics

#### 5.2.1 Editing measuring parameter

Select menu item **Measuring parameter** / **Edit** to set the measuring parameter.

Only the active parameter can be changed. To alter a stored set of parameter, this set must first be loaded and stored again, when the changes are done.

## 5.2.2 Saving sets of measuring parameter

Select menu item **Measuring parameter** *I* **Save** to save the active measuring parameter. A name must be entered by means of the text input dialog (see 3.4). If you close the text input with the F4 key (Ok), the parameter set will be saved, otherwise the saving will be cancelled.

## 5.2.3 Loading a set of measuring parameter

Choose menu item **Measuring parameter / Load** to read back a set of measuring parameter.

Select the measuring parameter set from the list by means of the cursor keys. Then press F4 (Ok) to load the parameter or F3 (Cancel) to cancel the action.

## 5.2.4 Deleting a set of measuring parameter

Select menu item **Measuring parameter** *I* **Delete** to delete a set of measuring parameter which is no longer needed.

Choose the measuring parameter set from the list by means of the cursor keys. Then press F4 (Ok) to delete the set or F3 (Cancel) to cancel the action.

## 6 Hardness conversion

The alphaDUR II can convert hardness values to another hardness scale or to tensile strength according to DIN standard 50 150:1976-12. This standard applies to mild steel, low alloyed steel and cast steel, hot formed or heat treated. For high alloyed and/or cold worked steel, mostly significant differences are to be expected.

It has to be pointed out, that there is no generally valid conversion relation. You must always consider the effect of the different indentors and test loads.

The alphaDUR II determines Vickers hardness according to the UCI (Ultrasonic Contact Impedance) method (see chapter 11). In contrast to the classical method according to DIN EN ISO 6507-1, the measurement is done while the test load is applied. The results of the UCI method are comparable to the classical method as long as the elastic part of the deformation is negligible compared to the plastic part. This applies to metals and e.g. ceramics.

DIN standard 50 150:1976-12 covers the following ranges:

| HRC:              | 240 HV / 20,3 HRC             | to | 940 HV / 68,0 HRC               |
|-------------------|-------------------------------|----|---------------------------------|
| HRB:              | 85 HV / 41,0 HRB              | to | 250 HV / 99,5 HRB               |
| Brinell:          | 80 HV / 76,0 HB               | to | 650 HV / 618 HB                 |
| tensile strength: | 80 HV / 255 N/mm <sup>2</sup> | to | 650 HV / 2180 N/mm <sup>2</sup> |

For HRC, HRB and tensile strength, the conversion is limited to these ranges. Brinell would be converted even if the value is not in the range covered by the DIN standard.

To change the hardness scale, select the menu item **Measuring parameter / Edit / Hardness scale** (see chapter 5.2.1) or press the F1 key in the measuring window. The F1 key will be deactivated if the instant printout mode (see 4.4) or the accompanying statistics (see 4.3) is activated.

## 7 Material calibration

The alphaDUR II has to be calibrated for every material that should be measured. These calibrations can be permanently stored to the device.

A factory-provided standard calibration for steel is preset in the alphaDUR II and cannot be deleted.

The calibrations can be grouped to sections. So a two-level hierarchy is established to keep things clear if lots of calibrations shall be saved. E.g. ferrous materials and aluminium alloys can be assigned to different sections.

To calibrate a material, select menu item **Material calibration** / **Calibrate**. You will need a material sample of known hardness (reference sample) for the calibration.

This reference sample must fulfil the following requirements:

- Sufficient size. Especially the thickness should not be less than 16 mm (as for standard test blocks).
- The surface should be finely lapped. The dispersion of measured hardness values will rise with greater roughness of the surface and will lead to inexact calibrations.
- The hardness of the sample should be as homogeneous as possible over the total surface. Variability of the hardness effects the measurement and leads to inexact calibrations.

The hardness of the reference sample can be determined e.g. with a stationary hardness tester. If such an instrument is not available, the manufacturer of the alphaDUR II can assist you.

First the three calibration parameter must be set:

- Select the hardness scale for the calibration. This is usually the hardness scale which was used to measure the hardness of the reference sample.
- 2. Enter the hardness of the reference sample.

 Enter the number of measurements that should be included for calibration. Usually 4 to 5 measurements are sufficient. If great dispersions are to be expected, e.g. for rough surfaces, the number should be increased.

Now, take the measurements for calibration. The alphaDUR II sounds a beep at the end of each measurement. Hold the probe perpendicular to the sample surface and lower it evenly and steadily.

When the calibration is done, the standard deviation of the measurements will be displayed (in units of the selected hardness scale and as percentage of the mean value). This allows conclusions regarding the quality of the calibration. If the standard deviation is to high, press the appropriate function key to repeat the calibration. As for regular hardness measurements, the standard deviation of the calibration depends on surface quality, homogeneity and correct probe handling (perpendicular, without shaking). The standard deviation will be displayed with 1 more fractional digits than usual for the hardness scale (Rockwell scales will usually be displayed with 1 fractional digit, Vickers, Brinell and tensile strength without any fractional digits). The standard deviation as percentage of the mean value will be displayed with 2 fractional digits.

When the calibration turns out satisfactory, it can be saved. Now you have to decide if the new calibration shall replace an older one, or if the calibration should be saved as a new one.

In the former case, you have to select the material that should be replaced.

In the second case, there are 3 alternatives:

 The material calibration should be assigned to an existing section. By these sections, the calibrations can be organized in a two-level hierarchy, so that you can keep track even if lots of calibrations are needed. E.g. ferrous materials and aluminium alloys can be assigned to different sections. In the simplest case, the section 'Standard' can be selected.

- If a new section should be created, you are first asked to enter the name of the section, then you are asked to enter the name of the calibrated material.
- 3. If the material calibration shall not be assigned to any section, just enter the name of the calibrated material.

Now, the new calibration can be selected in **Measuring parameter / Edit**/ Material

# 8 Memory functions

The alphaDUR II can store up to about 500.000 readings. These readings are organized in measurement series (groups).

When you create a new series, you must enter a name for it. By these names the series can be selected for display and printout. The hardness values will be saved including time and date of measurement. In addition, the active measuring parameter are also saved including:

- Probe type
- Test load
- Material
- Hardness scale (HV, HB, HRC, HRB or tensile strength [N/mm<sup>2</sup>]).
- Upper and lower limit for rating GOOD

While values are saved to a series, the F1 and F2 keys (measuring parameter and hardness scale) are disabled in the measuring window.

When a series is displayed or printed, standard deviation and mean value will be included.

# 8.1 Creating a new series

Select the menu item **Memory functions** / **Create new group** to start a measurement series. After you entered a name for the series (see 3.4),

the measuring window will open and the following readings are saved to this series.

The measuring parameter cannot be changed, while a series of measurements is taken.

Press ESC of F4 (Main menu) to close the series. You will be asked, if the series should be saved finally.

#### 8.2 Continuation of a series

To append further data to a series, select the menu item **Memory functions / Append data to series**. The new data will be saved with the current time and date.

## 8.3 Deleting a series

Select menu item **Memory functions / Delete** to delete a series.

# 8.4 Displaying a series

Select menu item **Memory functions** *I* **Show** to display a series and the related statistics (see 4.3.1). The values can be altered or deleted.

# 9 System settings

## 9.1 Language

Select the menu item **System / Language** to set the language. Select the desired language by means of the cursor keys. The chosen language will become active when you close the dialog by pressing F4 (Ok).

#### 9.2 Ports

To change the serial port parameter, select the menu item **System** *I* **Ports**. Baud rate, number of data and stop bits and parity can be set.

Default is:

115200 Baud 8 Data bits 1 Stop bit No Parity

#### 9.3 Time

Select the menu item **System / Time** to set the current time. The format is HH:MM (hour:minute). Press F4 (Ok) to save the time. To cancel the input, press F3 or ESC.

#### 9.4 Date

Choose the menu item **System / Date** to set the current date. Select the month from the list in the upper left corner of the window. The year is displayed in the upper right corner. In the central part of the window, the day can be selected. Press F1 to switch between these 3 fields. The value can be selected by means of the cursor keys.

Press F4 (Ok) to save the current time. To cancel the input, press F3 or ESC.

# 9.5 System information

Select **System** / **Info** from the menu to display the system information. The version numbers of software, kernel and system will be shown. If a probe is connected, the serial number of the probe, the version of probe

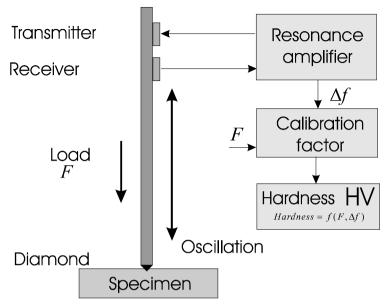
software and the number of measurements done with this particular probe will be displayed additionally.

# 10 Maintenance and inspection

Periodically checks of the device should be executed with standard hardness test blocks. The thickness of the test block is very important, due to the measuring method. It should be no less than 16 mm. Test blocks of lesser thickness (e.g. 6mm) aren't suitable. DKD-certified test blocks of 16 mm thickness are available at the manufacturer of the alphaDUR II. Depending on the frequency of use, a check / maintenance of the probes

Depending on the frequency of use, a check / maintenance of the probes should be performed at intervals of 1 to 2 years.

## 11 The UCI method


The UCI method (Ultrasonic Contact Impedance) is successfully used in hardness testing since many years.

A rod is excited into a longitudinal oscillation. At the tip of the rod, a Vickers diamond is placed. This diamond is pressed to the specimen with a discrete test load. Mostly the test load F is applied through a spring.

The rod oscillates with its self-resonant frequency which depends essentially on its length. When the Vickers diamond penetrates the specimen, the oscillation of the rod is damped. This causes a shift  $\Delta f$  of the resonance frequency, which can easily be measured.

The damping of the rod and the resulting shift in resonance frequency depends on the size of the area of contact between the diamond and the specimen and therewith on the hardness of the material if the test load is constant. Beneath the hardness, the elastic modulus of the material also affects the frequency shift.

The hardness of the material can be calculated from the known test load, the measured frequency shift and the material calibration factor (for taking the elastic modulus into account).



The advantages of the UCI method are the ease of automation and the very good reproducibility of the hardness readings. The reproducibility of the measurements is better than with optical methods of hardness testing because the total area of contact (proportional to d²) enters into the measurement and not only the diagonal d or a diameter. Moreover the measurement results are independent from the subjective view of a single examiner and the test is very fast executable.

For carbon steel and low alloyed steel, hardness reference samples are used for purpose of calibration. The low variation of the elastic modulus of this group of materials can be neglected.

# 12 Proper disposal



Consumers are legally required to dispose of batteries at suitable collection points, vending points or dispatch bays. The crossed-out wheeled bin means that batteries must not be disposed of in the household waste. Pb, Cd and Hg designate substances that exceed the legal limits.

#### 12.1 German

Verbraucher sind gesetzlich verpflichtet Altbatterien zu einer geeigneten Sammelstelle/Verkaufsstelle/Versandlager zu bringen. Die durchgestrichene Mülltonne bedeutet: Batterien und Akkus dürfen nicht in den Hausmüll. Pb, Cd und Hg bezeichnet Inhaltsstoffe die oberhalb der gesetzlichen Werte liegen.

#### 12.2 French

La législation exige des consommateurs le dépôt des piles usagées dans un lieu de collecte approprié, un point de vente ou un entrepôt d'expédition. La poubelle barrée signifie qu'il est interdit de jeter les piles et les batteries avec les ordures ménagères. Pb, Cd et Hg désignent les substances dont les valeurs dépassent les limites légales.

#### 12.3 Italian

Per legge, i consumatori sono obbligati a depositare le batterie esaurite presso i punti di raccolta, i punti di vendita o i magazzini di spedizioni. Il simbolo del contenitore dei rifiuti sbarrato indica che è vietato smaltire le batterie con i rifiuti domestici. Pb, Cd e Hg indicano le sostanze presenti con valori superiori alla norma.

## 12.4 Spanish

Los usuarios están obligados por ley a depositar las pilas viejas en un punto de recogida adecuado /punto de venta/centro de envío. El contenedor de basura tachado significa: la pilas no deben desecharse en la basura doméstica. Pb, Cd y Hg designan sustancias que se encuentran por encima de los valores establecidos por ley.

## 13 Technical Data

Test method Vickers hardness according to the UCI-method (DIN

30159 and VDI/VDE Guideline 2616, Part 1). Measurement is done with test load applied.

Indenter Diamond, Vickers pyramid angle 136°.

calibrated with standard hardness test blocks. Tests on ceramics, glass and plastics are also possible using comparison measurements for calibration

purposes.

Test load 10, 20, 30, 49 or 98 N, depending on the UCI probe

Measurement range Vickers HV 10 - approx. 3000

 Rockwell\*C
 HRC
 20,3
 68,0

 Rockwell\*B
 HRB
 41,0
 99,5

 Brinell\*
 HB
 10
 approx

Brinell\* HB 10 - approx. 2850 Tensile strength\* N/mm² 255 - 2180

\* Conversion according to DIN 50 150

Reproducibility Vickers HV ± 1% of Scale value

Rockwell HRC  $\pm$  0.5 Points Rockwell HRB  $\pm$  1.2 Points

Brinell HB ± 1% of Scale value

Memory 32MB Flash memory for approx. 512.000 readings

divided into variable groups. Storage includes date,

time and Pass/Fail evaluation.

Statistics Mean value, minimum, maximum and standard

deviation (absolute and relative). Single readings

can be deleted and redone.

Interfaces USB-Master, USB-Slave, RS232, 10/100 MBit

Ethernet

Power supply Mains adaptor/battery charger 100 - 240 V AC

NiMH battery 4,8 V / 2700 mAh

Operating time Battery operation: approx. 7 hours

Charging time: approx. 3 hours

Temperatures Operating range: 0°C to 50°C

Storage: -20°C to 70°C

| Dimensions | Device<br>Probe | Height<br>Width<br>Depth<br>Diameter<br>Length | 78<br>198<br>160<br>19,5<br>175 | mm<br>mm<br>mm<br>mm |
|------------|-----------------|------------------------------------------------|---------------------------------|----------------------|
| Weights    | Device<br>Probe | 1400 g<br>190 g                                |                                 |                      |

# **Appendix 1: License information**

This product contains Free Software which is licensed under the GNU General Public License (GPL) or under the GNU Lesser General Public License (LGPL). The free software source code can at least for a period of 3 years be requested from BAQ GmbH. However, please be noted that we cannot provide guarantee with the source code, and there is also no technical support for the source code from us.

BAQ GmbH Bienroder Weg 53 38108 Braunschweig Germany

Tel: +49 531 21547 - 0

Fax: +49 531 21547 - 20